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In the past several decades, the fields of ultrasound and magnetic resonance elastography have

shown promising results in noninvasive estimates of mechanical properties of soft tissues. These

techniques often rely on measuring shear wave velocity due to an external or internal source of

force and relating the velocity to viscoelasticity of the tissue. The mathematical relationship

between the measured velocity and material properties of the myocardial wall, arteries, and other

organs with non-negligible boundary conditions is often complicated and computationally expen-

sive. A simple relationship between the Lamb–Rayleigh dispersion and the shear wave dispersion

is derived for both the velocity and attenuation. The relationship shows that the shear wave velocity

is around 20% higher than the Lamb–Rayleigh velocity and that the shear wave attenuation is about

20% lower than the Lamb–Rayleigh attenuation. Results of numerical simulations in the frequency

range 0–500 Hz are presented. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3654029]

PACS number(s): 43.80.Cs, 43.20.Bi, 43.20.Jr, 43.20.Mv [PEB] Pages: 3549–3552

I. INTRODUCTION

In the past several decades, the field of elastography has

offered various techniques for measuring stiffness of different

organs to evaluate the presence of pathophysiological condi-

tions and aid the treatment of diseases.1 A majority of the

techniques rely on tracking the deformation of the tissue due

to intrinsic physiological motion or external force due to a me-

chanical driver or focused ultrasound radiation force. Tissue

undergoing displacement due to wave propagation is used to

estimate shear wave velocity, which is directly related to the

shear modulus of elasticity, l. Geometry of organs such as the

liver, kidney, and the breast allows one to assume that propa-

gating shear waves in the middle of the organ (“far” from the

edges) would not be affected by the boundaries. In the case of

the liver, for example, the tissue can be modeled as an infinite

elastic or viscoelastic medium, which allows for decomposi-

tion of the excitatory wave into the compressional and shear

components.2 The advantage of this approach is that the com-

pressional and shear waves are separable and measuring the

shear wave velocity in the plane orthogonal to the excitation

beam is sufficient to estimate the shear modulus.

Organs like the left ventricular (LV) free-wall of the

heart (10–15 mm thick) and arteries (�5 mm in diameter) can

be approximated as plates since they are “thin” compared to

the excitation force beam (focal length of 2–4 mm). The use

of radiation force in plate-like organs excites guided waves

that arise as a result of combining shear and compressional

waves. The use of the curl operator has shown promising

results in extracting the shear wave component alone,3,4 but

the curl operator requires information about the tissue defor-

mation in all three dimensions of motion, which is not avail-

able in traditional ultrasound elasticity imaging techniques.

Several groups have reported the use of Lamb waves to

model the motion and deformation of the myocardial sep-

tum, LV free-wall, and the arteries.5–7 These approaches are

based on measuring the dispersion velocity and fitting the

Lamb wave dispersion equation model to the data to estimate

elasticity and viscosity. This adds computational costs to

evaluating the mechanical properties of organs and also

requires validation that Lamb-like motion occurs in the

given organ. The A0 mode of anti-symmetric Lamb wave

motion is characterized by preserved phase through the

thickness of the plate-shaped object, in this case the myocar-

dial wall. Thus, in vivo excitation of an anti-symmetric

Lamb wave requires focusing ultrasound radiation force in

the middle of the LV free-wall. This might prove to be diffi-

cult due to physiological periodic motion of the heart and

higher power necessary to move the entire heart wall.

We have previously reported the use of Lamb wave dis-

persion ultrasound vibrometry to quantify viscoelasticity of

various materials,7,8 as well as advantages of using Rayleigh

wave excitation to obtain similar results.9 Here, we present a

simplification of the Rayleigh wave approach by showing its

relationship to the “pure” shear wave (shear wave in the infi-

nite medium). This approach would decrease computational

costs and allow for more accurate estimation of shear wave

velocity and attenuation, and would lead to model-free

measurements of mechanical properties of soft tissues.

II. METHODS

The anti-symmetric Lamb wave dispersion equation for

a viscoelastic plate submerged in a fluid, assuming that the

compressional wave number for the plate and fluid are very

small compared to the Lamb wave number and that the plate

and fluid have similar densities, is as follows:5,7,9

4k3
LbL coshðkLhÞ sinhðbLhÞ � ðk2

s � 2k2
LÞ

2
sinhðkLhÞ

� coshðbLhÞ ¼ k4
s coshðkLhÞ coshðbLhÞ; (1)

a)Author to whom correspondence should be addressed. Electronic mail:

nenadic.ivan@mayo.edu

J. Acoust. Soc. Am. 130 (6), December 2011 VC 2011 Acoustical Society of America 35490001-4966/2011/130(6)/3549/4/$30.00



where bL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

L � k2
s

p
, kL¼x/cL is the Lamb wave number,

x is the angular frequency, cL is the frequency dependent

Lamb wave velocity, ks ¼ x
ffiffiffiffiffiffiffiffiffiffiffi
qm=l

p
is the shear wave num-

ber, qm is the density of the sample (the same as that of

water� 1 000 kg/m3), h is the half-thickness of the sample,

and l is the shear modulus. Here, the shear modulus l can

be expressed in terms of the Voigt, generalized Maxwell, or

other viscoelastic rheological model. By dividing both sides

of Eq. (1) by cosh kLhð Þ cosh bLhð Þ, Eq. (1) is analogous to

4k3
LbL tanhðbLhÞ � ðk2

s � 2k2
LÞ

2
tanhðkLhÞ ¼ k4

s : (2)

Since limz!1½tanhðzÞ� ¼ 1 for �p=2 < argðzÞ < p=2 and

since bL and kL increase as a function of frequency and the

sample thickness is constant, the real part of Eq. (2) con-

verges analytically to the real part of Eq. (3), which is the

Rayleigh wave dispersion equation for a viscoelastic plate in

a fluid of similar density. Here kR¼x/cR is the Rayleigh

wave number, and cR is the frequency dependent Rayleigh

wave velocity,9

4k3
RbR � ðk2

s � 2k2
RÞ

2 ¼ k4
s : (3)

By inserting the definition of bR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R � k2
s

p
into Eq. (3)

and introducing the substitution x ¼ k2
s =k2

R, the third order

polynomial (7) is obtained:

4k3
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R � k2
s

q
¼ 2k4

s � 4k2
Rk2

s þ 4k4
R; (4)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

s

k2
R

s
¼ k4

s

k4
R

� 2
k2

s

k2
R

þ 2; (5)

2
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

¼ x2 � 2xþ 2; (6)

x3 � 4x2 þ 8x� 4 ¼ 0: (7)

Equation (7) has one real solution and a pair of complex con-

jugate solutions that do not have a physical meaning. The

real solution, x ¼ k2
s =k2

R ¼ 0:704, is of particular interest as

it gives a ratio between the Lamb–Rayleigh wave number

and the shear wave number ks/kR¼ 0.839 or kR/ks¼ 1.1915,

where ks¼x/cs� ias, kR¼x/cR� iaR, cs, cR, as, and aR

being the shear and Rayleigh wave velocities and attentua-

tions, respectively. While the imaginary parts of Eqs. (2) and

(3) do not necessarily converge, the real parts of Eqs. (2) and

(3) depend on cs, cR, as, and aR due to cross terms. Therefore,

the 1.1915 relationship holds for both the real and imaginary

components of kR and ks.

The Rayleigh wave dispersion equation for a solid with

vacuum or air loading is similar to Eq. (7) except for the

right hand side term:

4k3
RbR � ðk2

s � 2k2
RÞ

2 ¼ 0: (8)

FIG. 1. (Color online) Comparison between the Lamb wave dispersion (solid line) and corrected shear wave dispersion (cs/1.1915) (open circles) for plates of

various thicknesses and values of elasticity and viscosity.

3550 J. Acoust. Soc. Am., Vol. 130, No. 6, December 2011 Nenadic et al.: Letters to the editor



Similar treatment of Eq. (8) yields the ratio kR=ks¼ 1:05,10

which has been experimentally determined by Zhang et al.11

III. RESULTS

The anti-symmetric Lamb wave dispersion equation for

a plate submerged in a water-like fluid [Eq. (1)] was used to

calculate the Lamb wave velocities in the frequency range

0–500 Hz. The frequency response of the plate was assumed

to obey the Voigt model so that the shear modulus l is

expressed as l¼ l1þ ixl2, where l1 and l2 are the elastic

and viscous moduli, respectively. Solid lines in Fig. 1 show

Eq. (1) plotted for various combinations of the plate thick-

nesses H¼ 2 h and elasticity (l1) and viscosity (l2) values in

the range of those previously reported in soft tissues.7

The shear wave velocity cs for the same values of l1

and l2 was calculated using ks ¼ x
ffiffiffiffiffiffi
qm
p

l, where l¼ l1

þ ixl2, and the real part of ks¼x/cs� ias. Shear wave ve-

locity divided by 1.1915 (cs/1.1915), also referred to as cor-

rected shear wave velocity, is plotted as open circles for

comparison. Note that the shear wave velocities divided by

1.1915 and the Rayleigh wave velocities are mathematically

analogous for the given mechanical properties so the latter

converges to the former similar to the way the A0 Lamb

wave mode converges to the Rayleigh velocity, as previously

reported by our group.9

With the known values of shear wave velocity and

attenuation (complex shear wave number) and the Lamb

wave velocity, Eq. (1) was used to determine the Lamb wave

attenuation. The relationship between the shear wave and

the Lamb wave attenuation according to our theory is

as/aR¼ 1.1915. Figure 2 shows the values of corrected shear

wave attenuation (as/1.1915) as open circles for various

combinations of plate thicknesses H¼ 2h, l1, and l2. Esti-

mated Lamb wave attenuation divided by 1.1915 (as/1.1915)

is shown as solid lines.

Figure 3 shows a typical set of anti-symmetric Lamb

wave dispersion curves for an elastic plate 10 mm in thick-

ness and shear modulus of 10 kPa submerged in a fluid of

equal density. Table I summarizes the convergence veloc-

ities at high frequencies of A0 and A1 modes for various val-

ues of elasticity and thickness and the ratio of the two. Note

that all the Lamb wave modes of the order higher than A0

converge to the shear wave velocity (cs) and that the A0

Lamb and Rayleigh velocity (cR) are the same for higher

frequencies.

IV. DISCUSSION

Our analysis suggests that shear wave velocity and

attenuation can be recovered by measuring the velocity and

FIG. 2. (Color online) Comparison between the Lamb wave attenuation (solid line) and corrected shear wave attenuation (as/1.1915) (open circles) for plates

of various thicknesses and values of elasticity and viscosity.
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attenuation of propagating Lamb–Rayleigh waves without

cumbersome and costly Lamb wave fitting.

A drawback to this approach is that the relationship

need not hold for frequencies less than the Lamb–Rayleigh

convergence frequency. This is manifested in Fig. 2, where

for H¼ 5 mm, the 50 Hz attenuation measurements are sig-

nificantly different. The attenuation estimates follow the

trend of the Lamb and shear wave velocity values. To our

advantage, the LV free-wall myocardium is usually thicker

than 10 mm for which the Lamb and Rayleigh velocities con-

verge at lower frequencies.

It is important to note that the relationship between the

Lamb and shear wave velocity and attenuation presented

here is derived for a fixed value of the Poisson’s ratio of

�¼ 0.5. In addition, it was assumed that the density of the

fluid surrounding the plate is similar to that of the plate, a

reasonable assumption when dealing with soft biological tis-

sues such as the myocardium and arteries. In materials with

a different Poisson’s ratio and density this relationship need

not hold and a more generalized expression could be

derived.

In a recent publication by Couade et al.,6 the authors

proposed an empirical method for measuring shear wave

modulus of elasticity of arteries by fitting a Lamb wave dis-

persion model to the experimental dispersion velocities. The

empirical model includes a correction factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
1=

ffiffiffi
2
pq

¼ 0:8409 ¼ 1=1:19, which is the ratio between the observed

Lamb wave velocity and the expected Lamb wave velocity,

suggesting that the experimental Lamb wave velocities

should be lower than the measured values. This might be

due to the fact that the ratio between the A1 and A0 modes is

about 1.19 in water and that the reported paper is tracking

the convergence velocity of the An modes (n¼ 1, 2,…) rather

than the A0 mode. We have performed similar experiments

in which we compared the velocities of urethane rubber

plates and tubes where the thickness of the plates and

diameters of tubes were the same, and have noticed that the

same ratio holds. The results of these studies are beyond the

scope of this study.

V. CONCLUSION

An algebraic relationship between the shear wave and

Rayleigh wave velocity of a plate submerged in a fluid of

similar density is derived. Due to convergence of Lamb and

Rayleigh waves and the use of Lamb waves to quantify me-

chanical properties of the heart wall and arteries, this theory

allows for simplification of equations and decreased compu-

tational cost.
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FIG. 3. (Color online) Anti-symmetric Lamb wave dispersion curves for an

elastic plate submerged in a noncompressible fluid (thickness of the plate

H¼ 10 mm, shear modulus l¼ 10 kPa).

TABLE I. Summary of Rayleigh wave velocities (A0) and the shear wave

velocities (A1) for elastic plates submerged in a noncompressible fluid.

l (kPa) H (mm) A0 (m/s) A1 (m/s) A1/A0

10 10 2.645 3.153 1.1921

20 10 3.733 4.507 1.2073

30 20 4.580 5.475 1.1954

40 20 5.305 6.345 1.1960
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